European Conference on Nanoelectronics and Embedded Systems for Electric Mobility

"eMobility eMotion"

25-26th September 2013, Toulouse, France

6-phase Fault-Tolerant Permanent Magnet Traction Drive for Electric Vehicles

Chris Gould, University of Sheffield

Vipulkumar Patel Jiabin Wang

Dian Nugraha Radovan Vuletic

Jonas Tousen Jan Klenner

High Power Motor

Role of partners in supply chain

Multi-phase inverter with independent control

Fault tolerant multiphase motor having wide speed range with high efficiency

Specifications and Workbench tests

Key challenges for EV traction

- A. Starting torque at low speed
- B. Acceleration
- C. Efficiency
- D. Speed range
- E. Power density
- F. Torque ripple
- G. Reliability & fault tolerance
- H. Flexibility of control

Drive train & design specifications

Power train drive for segment A vehicle

Novel fault-tolerant 6-phase electric motor

Novel 6-phase, 18-slot, 8-pole winding configuration

- Improvement of safety and availability by designing the machine topology as two independent balanced 3-phase systems in single stator
- Fault tolerant as vehicle will continue to run with 50% power/torque output even with loss of one 3-phase system
- Lower torque ripple & cogging torque
- Lower eddy current losses in rotor PMs
- Lower copper losses due to shorter end-windings

> Development of winding configuration A+ B+ B+B-B-B-C-B+ B+ 15 3-phase, 9-slot, 8-/10-pole winding

➤ Normalized MMF space harmonics distribution

✓ The novel winding configuration eliminates many harmonics, which leads to lower eddy current loss in PM and lower torque ripple in a machine.

➤ Design Constraints for EV traction motor with PMs

Type of constraints	Design parameter		Constraints
Volumetric	Stator outer radius	mm	≤ 75.00
	Stack length of the motor	mm	≤ 150.00
	Mass of PM material	kg	≤ 1.2
Electromagnetic	Maximum flux linkage (derived from maximum line-to-line voltage)	mWb	≤ 74.7
	Inductance (to achieve peak torque)	mH	> 0.256
	Inductance (to achieve high efficiency in field weakening region)	mH	≤ 0.721
Thermal	Copper winding temperature	°C	≤ 180°
	Steel lamination temperature	°C	≤ 225°
	PM temperature	°C	≤ 150°

- ➤ Design optimized against specifications, mechanical and thermal constraints for maximum efficiency over NEDC
- Cross-section of optimized design

Conceptual design
1.1 kg PM material
94.4% energy efficiency over NEDC

Optimized design
0.9 kg PM material
94.9% energy efficiency over NEDC

➤ Performance of the optimized design – at rated & peak torque

		Rated Torque	Peak Torque
Torque	Nm	75	140
Torque ripple	%	2.5	4.2
Speed	rpm	2800	2800
Peak current	Α	74.0	172.5
Current density	A/mm ²	9.7	22.7
Copper loss	W	809	4394
Iron loss	W	181	273
PM eddy current loss	W	8	56
Efficiency	%	95.7	89.7
NEDC energy efficiency	%	94.9	

➤ Prototype motor & inverter

Stator frame

Stator assembly

Rotor assembly

Motor assembly

Inverter with instrumentation

> Test bench for direct measurement of efficiency at USFD

Comparison of prediction and test results at USFD

Torque (Nm)

Back EMF at 2800 rpm

Efficiency at 2800 rpm

- ✓ The measured back EMF matches very well with the finite element analysis predictions with a difference being just 2.7%.
- ✓ The efficiency at the base speed of 2800 rpm matches closely with the prediction.

➤ Measured efficiency map of inverter & motor with 320V at VW

Efficiency map of 6-phase inverter

Efficiency map of 6-phase motor

✓ Both the inverter and the motor exhibits high efficiency over the wide speed range.

➤ Measured efficiency map of power drive train at VW

✓ The novel fault-tolerant motor-inverter drive system has a high efficiency over wide speed range.

Conclusions

- Novel 6-phase motor is designed and developed to enhance safety and availability of power train drive.
- The motor is inherently fault tolerant. Loss of one 3-phase system does not result into complete loss of traction power.
- The new motor configuration exhibits high efficiency over a wide speed range, which is one of the key requirement for EV traction.
- Series of experimental measurements on a prototype motor and inverter have validated the novel fault-tolerant motor.

